LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure

Photo by rachitank from unsplash

Abstract The growth of lithium dendrite is one of the major problems that need to be solved before the application of metallic lithium anode to commercial rechargeable lithium batteries. The… Click to show full abstract

Abstract The growth of lithium dendrite is one of the major problems that need to be solved before the application of metallic lithium anode to commercial rechargeable lithium batteries. The three-dimensional host framework with well-defined architecture acting as current collector has been proved to be able to regulate the lithium plating/stripping behavior and thus to suppress the dendrite growth. In this work, a surface-patterned lithium electrode (spLi) with hexagonal arrays of micro-sized holes has been successfully fabricated by micro-fabrication methods. By employing scanning electron microscope (SEM) and optical microscope, the lithium plating/stripping behavior on spLi was directly visualized. The electrochemical performances of the spLi electrode were evaluated in Li symmetric cell and Li|LiCoO2 half-cell using carbonate ester and ether based electrolyte. It is found that the geometry of the hole has a strong influence on the lithium plating/stripping behavior, and the deposited lithium perfers to fill in the micro-sized holes due to the favorable kinetics. The hole structure preserves throughout battery cycling with no obvious dendrite growth and surface roughness after multiple plating/stripping cycles. These phenomena can well explain the excellent electrochemical performances of the surface-patterned lithium electrode (spLi) compared with bare lithium electrode. This research also demonstrates that lithium metal can serve as stable framework to host lithium plating/stripping, nevertheless, efforts are still needed to further optimize the architecture to achieve more evenly lithium plating/stripping.

Keywords: plating stripping; three dimensional; stripping behavior; lithium; electrode; lithium plating

Journal Title: Nano Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.