LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Side-chain effects on N-type organic thermoelectrics : A case study of fullerene derivatives

Photo from wikipedia

Abstract In this contribution, the two key parameters, the polarity and side chain length have been changed to study their effects on n-type organic thermoelectrics of a series of fullerene… Click to show full abstract

Abstract In this contribution, the two key parameters, the polarity and side chain length have been changed to study their effects on n-type organic thermoelectrics of a series of fullerene derivatives. Fullerene derivatives bearing either an alkyl side chain or ethylene glycol (EG) side chains of different lengths are used as the host molecules for molecular doping. It is found that the polar EG side chains can enable better miscibility with the polar dopant than the alkyl side chain, which leads to more than 5-fold enhancement of doping efficiency. Beyond the doping efficiency, another crucial parameter of molecular doping, the molecular order, is readily acquired by simultaneous control of the polarity and the length of the side chain. A polar side chain with an appropriate chain length can contribute to increasing Seebeck coefficients of doped fullerene derivatives more effectively than an alkyl side chain, likely due to the resultant good miscibility and high molecular order. As a result, an optimized power factor of 23.1 μW m-1 K-2 is achieved in the fullerene derivative with a tetraethylene glycol side chain. This represents one of the best n-type organic thermoelectrics. Additionally, EG side chains can improve the air stability of n-doped fullerene derivatives films as compared to an alkyl side chain. Our work sheds light on the design of side-chains in efficient n-type small molecules thermoelectric materials and contributes to the understanding of their thermoelectric properties.

Keywords: chain; fullerene derivatives; type organic; side chain; organic thermoelectrics; side

Journal Title: Nano Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.