LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct-printed nanoscale metal-oxide-wire electronics

Photo from wikipedia

Abstract One-dimensional metal oxide (MO) micro-wires and nano-wires (MOWs) can be excellent functional units for integrated and transparent electronics. However, MOWs produced using conventional synthesis methods are short, uncontrollable, and… Click to show full abstract

Abstract One-dimensional metal oxide (MO) micro-wires and nano-wires (MOWs) can be excellent functional units for integrated and transparent electronics. However, MOWs produced using conventional synthesis methods are short, uncontrollable, and randomly-distributed, so they cannot be easily used to fabricate high-density transistor arrays with precisely-controlled MOW-channels. Here, we describe a large-scale direct-printed universal nanoscale MOW electronics which includes highly-aligned, digitally-controlled and arbitrarily-long MOW arrays and various nanoscale applications of MOW field-effect transistors (FETs), neuromorphic synaptic transistors, and gas sensors. Broad classes of pristine, doped and alloyed MOWs are fabricated, so we demonstrated all-MOWFETs composed of conducting indium oxide (In2O3) wires and semiconducting indium zinc oxide (IZO) wires; the devices show a high carrier mobility μ ~17.67 cm2 V−1 s−1, comparable to μ of MO thin-film FETs. MOW synaptic transistors show presynaptic signals dependent postsynaptic behaviors similar to biological synaptic responses; which can be promising nano-electronic units of high-density neuromorphic devices. We also demonstrated MOW gas sensors which show high response to NO2 gas. Our direct-printed, large-scale, and individually-controlled MOW electronics would be a promising approach in development of industrially-viable MOW electronics and open new horizons for precisely-controlled inorganic MOW electronics and nanoscale printed electronics.

Keywords: mow electronics; metal oxide; direct printed; printed nanoscale; mow

Journal Title: Nano Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.