LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects

Photo by jordanmcdonald from unsplash

Abstract The coupling between piezo-/ferroelectricity and photoexcitation in semiconductors creates unique opportunities to enhance the photocatalytic and photoelectrochemical (PEC) performance. It is important to develop desirable piezo-/ferroelectric nanostructures to realize… Click to show full abstract

Abstract The coupling between piezo-/ferroelectricity and photoexcitation in semiconductors creates unique opportunities to enhance the photocatalytic and photoelectrochemical (PEC) performance. It is important to develop desirable piezo-/ferroelectric nanostructures to realize the full potential of polarization-modulated built-in electric fields that can effectively separate excited electron/hole pairs. In this work, taking KNbO3 as a representative material, we show that two-dimensional nanosheets exhibit greatly improved piezo-photocatalytic degradation efficiency for organic dyes compared to that of nanocubes. In addition, effective tuning of the PEC water splitting property by manipulating the ferroelectric polarization was observed in these KNbO3 nanostructures, demonstrating versatile and tuneable devices for solar energy conversion. By changing the poling configuration, a significant photocurrent density enhancement of 55% was achieved for KNbO3 nanosheets, which is much greater than the 25% enhancement observed for the nanocube counterparts. These results could be attributed to the larger piezo-/ferroelectric response in the nanosheets as determined by piezoresponse force microscopy analysis and piezoelectric potential simulation based on the finite element method. Our findings may provide insights into strategies for designing highly efficient piezo-/ferroelectric nanomaterials for solar energy conversion.

Keywords: knbo3 nanostructures; enhanced catalytic; catalytic performance; piezo photocatalytic; piezo ferroelectric

Journal Title: Nano Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.