LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel metal-organic layered material with superior supercapacitive performance through ultrafast and reversible tetraethylammonium intercalation

Photo from wikipedia

Abstract Supercapacitors can deliver high electrical power because of fast ion adsorption/desorption on the surface or surface redox reactions, which, in turn, restrict their energy density. To break surface-storage ceiling… Click to show full abstract

Abstract Supercapacitors can deliver high electrical power because of fast ion adsorption/desorption on the surface or surface redox reactions, which, in turn, restrict their energy density. To break surface-storage ceiling and further improve the energy density, here, we develop a cost-effective, layered material made of amorphous metal-organic nanosheets, Ni-p-phenylenediamine (Ni-pPD), with a large intersheet spacing of 1.6 nm for its robust and highly reversible intercalation reaction with tetraethylammonium cations. When coupled with activated carbon cathode, the 230 μm-thick Ni-pPD anode shows a high gravimetric capacitance (259 F g−1) and a high areal capacitance (2.9 F cm−2) at 2 A g−1 within a wide potential window of 2.85 V in the organic electrolyte of tetraethylammonium tetrafluoroborate/acetonitrile. In-situ electrochemical atomic force microscopy reveals that high kinetics at high potentials are attributed to the increased intersheet spacing under large polarization, demonstrating structural advantages of this novel material and its great potential for real-world applications.

Keywords: novel metal; layered material; intercalation; tetraethylammonium; metal organic

Journal Title: Nano Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.