LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data

Photo from wikipedia

Abstract A novel self-powered wearable sweat-lactate analyzer for building sports big data has been realized basing on sweat-evaporation-biosensing coupling effect. The self-powered biosensor in analyzer is fabricated from porous carbon… Click to show full abstract

Abstract A novel self-powered wearable sweat-lactate analyzer for building sports big data has been realized basing on sweat-evaporation-biosensing coupling effect. The self-powered biosensor in analyzer is fabricated from porous carbon film (modified with lactate oxidase). The hydrophilic carbon can soak up sweat, and harvest environmental thermal energy to generate electricity through nature sweat-evaporation. The outputting voltage increases with increasing sweat-lactate concentration, which can be regarded as biosensing signal. The surface enzymatic reaction can change the zeta potential of carbon and thus influence the outputting voltage. On the flexible substrate, the biosensor can be integrated with wireless transmitter and capacitor, constructing a self-powered wearable sweat-lactate analyzer. The analyzer can detect sweat-lactate concentration on athlete's skin, wirelessly transmit the exercise physiological information to terminal, and build sports big data. This work can provoke a new research direction for realizing self-powered wearable exercise-analyzing system, and can also promote the development of sports big data.

Keywords: powered wearable; self powered; sweat; sports big; big data; analyzer

Journal Title: Nano Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.