LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition

Photo from wikipedia

Abstract In this work, the bi-harvesting of light and vibration energy is realized in hydrothermally-synthesized ZnO nanorods which is designed to achieve photo-/piezo-bi-catalysis for dye decomposition. In the presence of… Click to show full abstract

Abstract In this work, the bi-harvesting of light and vibration energy is realized in hydrothermally-synthesized ZnO nanorods which is designed to achieve photo-/piezo-bi-catalysis for dye decomposition. In the presence of both UV irradiation and vibration, the decomposition ratio of ZnO nanorods for acid orange 7 is ∼80.8% within 100 min, which is higher than the value of ∼56.7% for photo-catalysis or the value of ∼31.8% for piezocatalysis. The enhanced photo-/piezo-bi-catalysis of ZnO nanorods in dye decomposition can be attributed to that the piezoelectric potential which formed in piezocatalysis process can help separate the photogenerated electron-hole pairs, therefore achieving a synergy effect between photocatalysis and piezocatalysis. The excellent photo-/piezo-bi-catalysis of ZnO can potentially find application in enhancing catalytic efficiency of dye decomposition through harvesting the light and vibration energy present in natural environments.

Keywords: decomposition; dye decomposition; harvesting light; energy; light vibration

Journal Title: Nano Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.