Abstract In the natural environment, rectilinear motions normally take the form of low-frequency and broadband vibrations. This poses problems for devices aimed at harvesting energy from these motions, since conventional… Click to show full abstract
Abstract In the natural environment, rectilinear motions normally take the form of low-frequency and broadband vibrations. This poses problems for devices aimed at harvesting energy from these motions, since conventional linear electromagnetic generators are inefficient under such conditions. Here we present a bistable triboelectric linear generator (BTLG) with nonlinear characteristics for low-frequency and broadband energy harvesting. In this device, a nonlinear structure is used to achieve the bistable contact–separation motion to widen the working bandwidth as well as enhance the energy harvesting efficiency in low-frequency range. Piezoelectric components are also used in the device without increasing the complexity of the structure, which can compensate for the defects that the contact-separation mode triboelectric nanogenerator cannot work at a small amplitude. Experiments show that a 10 μ F capacitor can be charged to 0.12 V in 60 s at an ultralow frequency of 0.1 Hz. The frequency bandwidth of the BTLG is greatly broadened to 441% compared with a linear device. The proposed BTLG is capable of harvesting mechanical energy at low frequency with large working bandwidth, thus providing a effective method for energy harvesting of ambient low-frequency rectilinear motions.
               
Click one of the above tabs to view related content.