LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3

Photo from wikipedia

In order to achieve the highest performance of organometal trihalide perovskite solar cells, it is required to recognize the dominant mechanisms which play a key role in a perovskite material.… Click to show full abstract

In order to achieve the highest performance of organometal trihalide perovskite solar cells, it is required to recognize the dominant mechanisms which play a key role in a perovskite material. In the following studies, we have focused on the interfacial recombination between the hole transporting layer (HTL) and the perovskite CH3NH3PbI3 in solar cell devices with p–i–n architecture. It has been shown that Cu:NiOx used as HTL drastically decreases a short–circuit photocurrent (Jsc) and an open–circuit voltage (Voc). However, we have found that an addition of PTAA thin layer improves cells quality and, as a consequence, the efficiency of such solar cells increases by 2%. Here, we explain both Jsc and Voc losses with a theory of the “dead layer” of perovskite material where a very high surface recombination occurs. We demonstrate the numerical and experimental studies by the means of series detailed analyses to get in–depth understanding of the physical processes behind it. Using a drift–diffusion model, it is shown that the presence of a parasitic recombination layer influences mostly the current distribution in the simulated samples explaining Jsc and Voc losses. The following results could be useful for improving the quality of perovskite solar cells.

Keywords: perovskite solar; layer; role; surface recombination; recombination; solar cells

Journal Title: Nano Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.