Abstract Low-dimensional silicon-based materials have shown a great potential for thermoelectric applications due to their enhanced figure of merit ZT and high technology compatibility. However, their implementation in real devices… Click to show full abstract
Abstract Low-dimensional silicon-based materials have shown a great potential for thermoelectric applications due to their enhanced figure of merit ZT and high technology compatibility. However, their implementation in real devices remains highly challenging due to the associated large contact resistances (thermal and electrical). Herein we demonstrate ultralow contact resistance silicon nanowires epitaxially grown on scalable devices with enhanced ZT. Temperature dependent figure of merit was fully determined for monolithically integrated individual silicon nanowires achieving a maximum value of ZT = 0.2 at 620 K. Sidewise, this work accounts for the first time nearly zero thermal and electrical contact resistances in monolithically integrated bottom-up nanowires.
               
Click one of the above tabs to view related content.