LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage

Photo from wikipedia

Abstract Silicon (Si) has been broadly investigated as a promising anode in lithium-ion batteries (LIBs). However, there is still a problem that the alloying reactions of Si and Li often… Click to show full abstract

Abstract Silicon (Si) has been broadly investigated as a promising anode in lithium-ion batteries (LIBs). However, there is still a problem that the alloying reactions of Si and Li often cause structural failures and rapid degradation in capacity of the electrode. Herein, an in-situ encapsulation of Si nanoparticles forming metal-organic-framework (MOF) derived carbon shells has been developed to improve the performance and retain the structural integrity of the electrode. Using this strategy, a compact and robust interface was ensured between the Si nanoparticles and carbon shell while also reducing the unnecessary exposing areas simultaneously. Moreover, the pores in the MOF-derived carbon shells offered good channels for Li-ion penetration and diffusion. The resulted composite electrode exhibited excellent electrochemical performance and delivered a capacity of 3714 mAh g−1 at 200 mA g−1, and an outstanding reversible capacity of 820 mAh g−1 at 5000 mA g−1 even after 1000 cycles, Direct comparison between the encapsulated Si and naked Si revealed the significance of the MOF-derived carbon shells and its great potential for the next-generation high capacity LIBs.

Keywords: carbon; derived carbon; carbon shells; mof derived; ion

Journal Title: Nano Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.