LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stretchable synaptic transistors with tunable synaptic behavior

Photo from wikipedia

Abstract Stretchable synaptic transistors (SSTs) are of paramount importance for the development of soft machines and neuromorphic systems. Unfortunately, the reports about SSTs are very limited and more importantly, the… Click to show full abstract

Abstract Stretchable synaptic transistors (SSTs) are of paramount importance for the development of soft machines and neuromorphic systems. Unfortunately, the reports about SSTs are very limited and more importantly, the impact of the mechanical deformations that occur in stretchable electronics during practical applications, on the behavior of SSTs has never been reported. In this work, a simple and universal method was introduced to fabricate a stretchable organic synaptic transistor using wavy networks P3HT nanofibers as a semiconductor and the effect of mechanical deformation on its behavior at different deformation states is investigated for the first time. Our SSTs exhibited excellent mechanical stability even after experiencing large stretching deformation. More importantly, our results demonstrated that the learning and memory behavior, and the decay constants of synaptic transistors, which are among the most important parameters for biologic sensory neurons, can be tuned by mechanical deformation, which is associated with mechanical deformation dependant ion transport in ion-gel. These results offer a promising direction for utilizing mechanical deformation to develop different functional devices. Our SSTs with tunable synaptic behavior can facilitate the development of wearable and implantable artificial neuromorphic systems and soft machines.

Keywords: synaptic transistors; deformation; stretchable synaptic; tunable synaptic; behavior; mechanical deformation

Journal Title: Nano Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.