Abstract The effective separation of photo-generated electrons and holes is an important factor that determines the photocatalytic efficiency of the catalysts. Here, we propose a core/shell BaTiO3/TiO2 nanocomposites that present… Click to show full abstract
Abstract The effective separation of photo-generated electrons and holes is an important factor that determines the photocatalytic efficiency of the catalysts. Here, we propose a core/shell BaTiO3/TiO2 nanocomposites that present enhanced photocatalytic performance through a piezotronic effect. The polarization generated by the piezoelectric phase in the BaTiO3/TiO2 nanofibers prepared by the electrospinning method under ultrasonic activation dramatically improves the photocatalytic performance of the catalysts. Under the co-excitation of ultrasonic and ultraviolet irradiation, the oxidation rate constant of the polarized BaTiO3/TiO2 nanofibers on RhB dye can reach 9.67 × 10−2 min−1, which is 3.51 times and 3.22 times of the corresponding values of TiO2 nanofibers and BaTiO3/TiO2 nanofibers under only UV irradiation, respectively. This paper provides a promising strategy for improving photocatalytic performance through mechanical vibration and helps to understand the coupling mechanism between piezoelectric and photocatalytic effects.
               
Click one of the above tabs to view related content.