LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanowatt use 8 V switching nonvolatile memory transistors with 2D MoTe2 channel and ferroelectric P(VDF-TrFE)

Photo by kellysikkema from unsplash

Abstract Two dimensional (2D) p-MoTe2 channel-based nonvolatile memory transistors with ferroelectric P(VDF-TrFE) polymer has been studied using a bottom-gate device architecture, which is introduced to dramatically reduce both of the… Click to show full abstract

Abstract Two dimensional (2D) p-MoTe2 channel-based nonvolatile memory transistors with ferroelectric P(VDF-TrFE) polymer has been studied using a bottom-gate device architecture, which is introduced to dramatically reduce both of the switching and drain voltages to minimum 8 V and 10 mV, respectively. In fact, most of 2D-channel ferroelectric FETs with the same P(VDF-TrFE) polymer have used top-gate architectures, utilizing high switching pulse voltages over 20~25 V due to the existence of dead layer, which is unavoidably formed at the interface between P(VDF-TrFE) and thermal-deposited Al top gate. Key effects to realize such a low 8~13 V switching thus originate from the bottom-gate architecture. On the one hand, keys to obtain the low operation/drain voltage come from anneal-free Ohmic contact which is obtained using H2O2 solution. Thanks to the low operation voltages of 10 mV, consuming power in the nonvolatile FETs can be minimized to ~a few pW for OFF/Erase state and ~a few hundred pW for ON/Program although it eventually becomes ~ nW and ~ 30 nW for OFF and ON states in a practical circuit operation to switch organic light emitting diodes. Our approaches of bottom-gate architecture and H2O2 contact nicely work even for transparent nonvolatile memory FET.

Keywords: nonvolatile memory; memory transistors; vdf trfe; mote2 channel

Journal Title: Nano Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.