Abstract The polar and piezoelectric nature of the wurtzite structure of ZnO nanowires with a high aspect ratio at nanoscale dimensions is of high interest for piezotronic and piezoelectric devices,… Click to show full abstract
Abstract The polar and piezoelectric nature of the wurtzite structure of ZnO nanowires with a high aspect ratio at nanoscale dimensions is of high interest for piezotronic and piezoelectric devices, but a number of issues related to polarity are still open and deserve a particular attention. In this context, chemical bath deposition offers a unique opportunity to select the O- or Zn-polarity of the resultant nanowires and is further compatible with the fabrication processes of flexible devices. The control and use of the polarity in ZnO nanowires grown by chemical bath deposition open a new way to greatly enhance the performance of the related piezotronic and piezoelectric devices. However, polarity as an additional tunable parameter should be considered with care because it has a strong influence on many processes and properties. The present review is intended to report the most important consequences related to the polarity in ZnO nanowires for piezotronic and piezoelectric devices. After introducing the basic principles involving crystal polarity in ZnO, a special emphasis is placed on the effects of polarity on the nucleation and growth mechanisms of ZnO nanowires using chemical bath deposition, defect incorporation and doping, electrical contacts and device properties.
               
Click one of the above tabs to view related content.