Abstract Coupling together the pyroelectric effect and the photovoltaic effect is a novel method to significantly enhance the performance of photodetectors. In this work, we make use of this effect… Click to show full abstract
Abstract Coupling together the pyroelectric effect and the photovoltaic effect is a novel method to significantly enhance the performance of photodetectors. In this work, we make use of this effect through a tri-layered heterojunction of n-Si/p-SnOx/n-ZnO, which takes advantage of the pyroelectric properties of the n-type ZnO film and the photovoltaic response of the n-type Si/p-type SnOx heterojunction. The photo-response of the device, with excitation from a 405 nm wavelength laser, is carefully investigated, and it is shown that the photodetector performance is improved with increased chopper frequency owing to the coupled photovoltaic-pyroelectric effect. The Al/Si/SnOx/ZnO/ITO device exhibits an optimum responsivity and detectivity of 36.7 mA/W and 1.5 × 1011 Jones, respectively, with a laser power density of 36 mW/cm2 and at a chopper frequency of 400 Hz. Ultrafast rise and fall times of 3 and 2 µs, respectively, were obtained. Moreover, by using a 650 nm wavelength laser source, the responsivity and detectivity were improved up to 64.1 mA/W and 2.4 × 1011 Jones, respectively. The performance of these photodetectors is approximately twice as fast as other pyro-phototronic devices, and exhibits comparable photodetector characteristics when compared to perovskite/Si heterojunction and transition metal dichalcogenides lateral heterojunction devices. Therefore, by combining a pyroelectric ZnO film with a solar cell into one single structure, photodetectors based on the pyro-phototronic effect have been developed that demonstrate state-of-the-art performance. The devices show great promise for visible ultrafast photosensing.
               
Click one of the above tabs to view related content.