LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-oxide semiconductors for artificial photosynthesis: Progress on photoelectrochemical water splitting and carbon dioxide reduction

Photo from wikipedia

Abstract Among various artificial photosynthesis routes, photoelectrochemical (PEC) hydrogen (H2) production via water splitting and hydrocarbon generation via carbon dioxide (CO2) reduction are particularly intriguing for achieving a sustainable society.… Click to show full abstract

Abstract Among various artificial photosynthesis routes, photoelectrochemical (PEC) hydrogen (H2) production via water splitting and hydrocarbon generation via carbon dioxide (CO2) reduction are particularly intriguing for achieving a sustainable society. A simpler and potentially economical device design for PEC cells, as compared with those containing photovoltaic cells, is using semiconductor–liquid junction (SCLJ) based photoelectrodes to assemble a photoanode–photocathode tandem cell. The SCLJs form immediately upon semiconductor films immersing into electrolytes, which are then used to separate photogenerated electron–hole pairs and drive corresponding redox chemistry. To engineering these SCLJ-based photoanode–photocathode tandem PEC devices to achieving considerable solar energy conversion efficiencies, the key step is to identify suitable semiconductor materials, the core component in most solar energy conversion systems. In addition, applying effective strategies to modify these semiconductors are needed, as they cannot simultaneously meet all the requirements of efficient light absorption, charge separation and extraction, surface reaction, and operational stability at the same time. This article provides a review on promising non-oxide semiconductors for PEC conversion of solar energy into chemical fuels. The efforts to increase charge transport and separation, to accelerate the charge transfer kinetics across various interfaces, and to engender long-term durability of these non-oxide photoelectrodes are emphasized. As screening, evaluation and optimization have led to substantial improvement in both PEC performance and operational durability, non-oxide semiconductors will provide new opportunities, in addition to classical metal oxide semiconductors, to realize efficient and cost-effective PEC solar fuel production.

Keywords: oxide semiconductors; water splitting; carbon dioxide; non oxide; pec; artificial photosynthesis

Journal Title: Nano Today
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.