Rho GTPases play a central role in neuronal survival; however, the antagonistic relationship between Rac and Rho in the regulation of motor neuron survival remains poorly defined. In the current… Click to show full abstract
Rho GTPases play a central role in neuronal survival; however, the antagonistic relationship between Rac and Rho in the regulation of motor neuron survival remains poorly defined. In the current study, we demonstrate that treatment with NSC23766, a selective inhibitor of the Rac-specific guanine nucleotide exchange factors, Tiam1 and Trio, is sufficient to induce the death of embryonic stem cell (ESC)-derived motor neurons. The mode of cell death is primarily apoptotic and is characterized by caspase-3 activation, de-phosphorylation of ERK5 and AKT, and nuclear translocation of the BH3-only protein Bad. As opposed to the inhibition of Rac, motor neuron cell death is also induced by constitutive activation of Rho, via a mechanism that depends on Rho kinase (ROCK) activity. Investigation of Rac and Rho in the G93A mutant, human Cu, Zn-superoxide dismutase (hSOD1) mouse model of amyotrophic lateral sclerosis (ALS), revealed that active Rac1-GTP is markedly decreased in spinal cord motor neurons of transgenic mice at disease onset and end-stage, when compared to age-matched wild type (WT) littermates. Furthermore, although there is no significant change in active RhoA-GTP, total RhoB displays a striking redistribution from motor neuron nuclei in WT mouse spinal cord to motor neuron axons in end-stage G93A mutant hSOD1 mice. Collectively, these data suggest that the intricate balance between pro-survival Rac signaling and pro-apoptotic Rho/ROCK signaling is critical for motor neuron survival and therefore, disruption in the balance of their activities and/or localization may contribute to the death of motor neurons in ALS.
               
Click one of the above tabs to view related content.