LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enzymatic hydrolysis of poly(ethyleneterephthalate) used for and analysed by pore modification of track-etched membranes.

Photo from wikipedia

The potential of limited enzymatic poly(ethylene terephthalate) (PET) surface hydrolysis for the modification of track-etched (TE) membranes was investigated. Cutinases 1 and 2 from Thermobifida cellulosilytica as well as a… Click to show full abstract

The potential of limited enzymatic poly(ethylene terephthalate) (PET) surface hydrolysis for the modification of track-etched (TE) membranes was investigated. Cutinases 1 and 2 from Thermobifida cellulosilytica as well as a fusion protein of cutinase 1 with the polymer binding module from the polyhydroxyalkanoate depolymerase of Alcaligenes faecalis (Thc_Cut1_PBM) were shown to hydrolyse highly crystalline PET TE membranes with a pore diameter of ∼120nm at very narrow size distribution. Furthermore the effects of surface chemistry were investigated by comparison of enzymatic hydrolysis by Thc_Cut1_PBM of "as received" PET TE membranes with two surface functionalized versions towards a "hydrophilic" and a more "hydrophobic" surface. The effects of adsorbed protein and the efficacy of cleaning steps after enzymatic treatment were elucidated by complementary methods for surface analysis and membrane characterization. With the optimized cleaning protocol, all adsorbed protein could be removed from the enzyme-treated membranes and effects of chemical surface functionalization of the PET TE membranes were demonstrated. The highest efficiency of enzymatic surface hydrolysis was observed for the original PET TE membranes, leading to an 0.36% weight loss corresponding to a removal of ∼3nm PET from the entire surface of the porous membrane. This correlates very well with the measured increase of barrier pore diameter by 4nm (a radius reduction? of 2nm), leading to about a two-fold increased water permeability.

Keywords: etched membranes; surface; modification track; hydrolysis; pet membranes; track etched

Journal Title: New biotechnology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.