The present work describes the application of homologous recombination techniques in a wild-type Aspergillus terreus (ATCC 20542) strain to increase the flow of precursors towards the lovastatin biosynthesis pathway. A… Click to show full abstract
The present work describes the application of homologous recombination techniques in a wild-type Aspergillus terreus (ATCC 20542) strain to increase the flow of precursors towards the lovastatin biosynthesis pathway. A new strain was generated to overexpress acetyl-CoA carboxylase (ACCase) by replacing the native ACCase promoter with a strong constitutive PadhA promoter from Aspergillus nidulans. Glycerol and a mixture of lactose and glycerol were used independently as the carbon feedstock to determine the degree of response by the A. terreus strains towards the production of acetyl-CoA, and malonyl-CoA. The new strain increased the levels of malonyl-CoA and acetyl-CoA by 240% and 14%, respectively, compared to the wild-type strain. As a result, lovastatin production was increased by 40% and (+)-geodin was decreased by 31% using the new strain. This study shows for the first time that the metabolism of Aspergillus terreus can be manipulated to attain higher levels of precursors and valuable secondary metabolites.
               
Click one of the above tabs to view related content.