The Kunkel method is a widely used site-directed mutagenesis strategy that introduces point mutations by annealing mutation-containing oligonucleotides to single-stranded uracil-containing DNA (dU-ssDNA) templates. The method is fast and inexpensive… Click to show full abstract
The Kunkel method is a widely used site-directed mutagenesis strategy that introduces point mutations by annealing mutation-containing oligonucleotides to single-stranded uracil-containing DNA (dU-ssDNA) templates. The method is fast and inexpensive and has been routinely employed to generate point mutations and multi-site mutations. However, its efficiency for point mutations is highly variable. In this work, codons in both DNA templates and mutagenic oligonucleotides were optimized to lower the GC percentage (GC%) of the complementary regions, and the oligonucleotide length was also extended to reduce the GC difference between upstream and downstream regions. These modifications largely increased the mutation efficiency of single-site mutagenesis. In addition, a multi-stage cooling programme was developed in the annealing step specifically for multi-site mutagenesis, which increased the simultaneous mutation efficiency. The modifications will help in generating antibody libraries by effectively randomizing multiple CDRs simultaneously.
               
Click one of the above tabs to view related content.