Abstract In this paper a body-centered cubic(BCC) crystal plasticity model based on microscopic dislocation mechanism is introduced and numerically implemented. The model is coupled with irradiation effect via tracking dislocation… Click to show full abstract
Abstract In this paper a body-centered cubic(BCC) crystal plasticity model based on microscopic dislocation mechanism is introduced and numerically implemented. The model is coupled with irradiation effect via tracking dislocation loop evolution on each slip system. On the basis of the model, uniaxial tensile tests of unirradiated and irradiated RPV steel(take Chinese A508-3 as an example) at different temperatures are simulated, and the simulation results agree well with the experimental results. Furthermore, crystal plasticity damage is introduced into the model. Then the damage behavior before and after irradiation is studied using the model. The results indicate that the model is an effective tool to study the effect of irradiation and temperature on the mechanical properties and damage behavior.
               
Click one of the above tabs to view related content.