LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of crack length on SIF and elastic COD for elbow with circumferential through wall crack

Photo from wikipedia

Abstract Many damages due to flow-accelerated corrosion and cracking have been observed during recent in-service inspections of nuclear power plants. To determine the operability or repair for damaged pipes, an… Click to show full abstract

Abstract Many damages due to flow-accelerated corrosion and cracking have been observed during recent in-service inspections of nuclear power plants. To determine the operability or repair for damaged pipes, an integrity evaluation related to the damaged piping system should be performed by using already proven code and standards. One of them, the ASME Code Case is most popularly used to integrity assessment in nuclear power plants. However, the recent version of CC N-513 still recommends the simplified method which means a damaged elbow is assumed as an equivalent straight pipe. In addition, to enhance the accuracy integrity assessment in elbow, several previous studies recommend that the SIF and elastic COD values for an elbow with relatively large crack could be predicted by an interpolation technique. However, those estimates for elbow with relatively large crack might be derived to inaccurate results for crack growth analysis, such as for the allowable crack size and life estimation. Therefore, in this paper, the effect of crack length (0.3≤θ1/π ≤ 0.5) on SIF and elastic COD for elbow is systematically investigated. Then, for large crack in elbow, accurate estimates for SIF and elastic COD, which are widely used to assess the integrity of elbows, are proposed. Those proposed solutions are expected to be the technical basis for revisions of CC N-513-4 through the validation.

Keywords: crack length; effect crack; elastic cod; sif elastic; crack

Journal Title: Nuclear Engineering and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.