LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model of the onset of liquid entrainment in large branch T-junction with the consideration of surface tension

Photo from wikipedia

Abstract The T-junction exists widely in industrial engineering, especially in nuclear power plants, which plays an important part in nuclear power reactor thermal-hydraulics. However, the existing prediction models of the… Click to show full abstract

Abstract The T-junction exists widely in industrial engineering, especially in nuclear power plants, which plays an important part in nuclear power reactor thermal-hydraulics. However, the existing prediction models of the liquid entrainment are mainly based on the small branches or small breaks while there are a few researches for large branches (d/D > 0.2). Referring to the classical models about the onset of liquid entrainment of the T-junction, most of previous models regard liquid as ideal working fluid and ignore surface tension. This paper aims to study the effect of surface tension on the liquid entrainment, and develops an improved model based on the reasonable assumption. The establishment of new model employs the methods of force analysis, dimensional analysis. Besides, the dimensionless Weber number is adopted innovatively into the model to show the effect of surface tension. What is more, in order to validate the new model, three kinds of working fluids with different surface tensions are creatively adopted in the experiments: water, silicone oil and ethyl alcohol. The final results show that surface tension has a nonnegligible effect on the onset of liquid entrainment in large branch T-junction. The new model is well matched with the experimental data.

Keywords: liquid entrainment; surface tension; junction

Journal Title: Nuclear Engineering and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.