LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Economic evaluation of thorium oxide production from monazite using alkaline fusion method

Photo from wikipedia

Abstract Monazite is a phosphate mineral that contains thorium (Th) and rare earth elements. The Th concentration in monazite can be as high as 500 ppm, and it has the potential… Click to show full abstract

Abstract Monazite is a phosphate mineral that contains thorium (Th) and rare earth elements. The Th concentration in monazite can be as high as 500 ppm, and it has the potential to be used as fuel in the nuclear power system. Therefore, this study aimed to conduct the techno-economic analysis (TEA) of Th extraction in the form of thorium oxide (ThO2) from monazite. Th can be extracted from monazite through an alkaline fusion method. The TEA of ThO2 production studied parameters, including raw materials, equipment costs, total plant direct and indirect costs, and direct fixed capital cost. These parameters were calculated for the production of 0.5, 1, and 10 ton ThO2 per batch. The TEA study revealed that the highest production cost was ascribed to installed equipment. Furthermore, the highest return on investment (ROI) of 21.92% was achieved for extraction of 1 ton/batch of ThO2, with a payback time of 4.56 years. With further increase in ThO2 production to 10 ton/batch, the ROI was decreased to 5.37%. This is mainly due to a significant increase in the total capital investment with increasing ThO2 production scale. The minimum unit production cost was achieved for 1 ton ThO2/batch equal to 335.79 $/Kg ThO2.

Keywords: fusion method; monazite; thorium oxide; alkaline fusion; production

Journal Title: Nuclear Engineering and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.