LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding intracortical excitability in phantom limb pain: A multivariate analysis from a multicenter randomized clinical trial

Photo by davidclode from unsplash

OBJECTIVES To explore associations of intracortical excitability with clinical characteristics in a large sample of subjects with phantom limb pain (PLP). METHODS Ancillary study using baseline and longitudinal data from… Click to show full abstract

OBJECTIVES To explore associations of intracortical excitability with clinical characteristics in a large sample of subjects with phantom limb pain (PLP). METHODS Ancillary study using baseline and longitudinal data from a large multicenter randomized trial that investigated the effects of non-invasive brain stimulation combined with sensorimotor training on PLP. Multivariate regression modeling analyses were used to investigate the association of intracortical excitability, measured by percentages of intracortical inhibition (ICI) and facilitation (ICF) with clinical variables. RESULTS Ninety-eight subjects were included. Phantom sensation of itching was positively associated with ICI changes and at baseline in the affected hemisphere (contralateral to PLP). However, in the non-affected hemisphere (ipsilateral to PLP), the phantom sensation of warmth and PLP intensity were negatively associated with ICI (both models). For the ICF, PLP intensity (baseline model only) and age (longitudinal model) were negatively associated, while time since amputation and amputation level (both for longitudinal model only) were positively associated in the affected hemisphere. Additionally, use of antidepressants led to lower ICF in the non-affected hemisphere for the baseline model while higher amputation level also led to less changes in the ICF. CONCLUSION Results revealed clear associations of clinical variables and cortical excitability in a large chronic pain sample. ICI and ICF changes appear not to be mainly explained by PLP intensity. Instead, other variables associated with duration of neuroplasticity changes (such as age and duration of amputation) and compensatory mechanisms (such as itching and phantom limb sensation) seem to be more important in explaining these variables.

Keywords: plp; intracortical excitability; excitability; phantom limb; pain

Journal Title: Neurophysiologie Clinique
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.