LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA

Photo by mbrunacr from unsplash

In this paper, we present the parallel neuromorphic processor architectures for spiking neural networks on FPGA. The proposed architectures address several critical issues pertaining to efficient parallelization of the update… Click to show full abstract

In this paper, we present the parallel neuromorphic processor architectures for spiking neural networks on FPGA. The proposed architectures address several critical issues pertaining to efficient parallelization of the update of membrane potentials, on-chip storage of synaptic weights and integration of approximate arithmetic units. The trade-offs between throughput, hardware cost and power overheads for different configurations are thoroughly investigated. Notably, for the application of handwritten digit recognition, a promising training speedup of 13.5x and a recognition speedup of 25.8x are achieved by a parallel implementation whose degree of parallelism is 32. In spite of the 120MHz operating frequency, the 32-way parallel hardware design demonstrates a 59.4x training speedup over the single-thread software program running on a 2.2GHz general purpose CPU. Equally importantly, by leveraging the built-in resilience of the neuromorphic architecture we demonstrate the energy benefit resulted from the use of approximate arithmetic computation. Up to 20% improvement in energy consumption is achieved by integrating approximate multipliers into the system while maintaining almost the same level of recognition rate achieved using standard multipliers. To the best of our knowledge, it is the first time that the approximate computing and parallel processing are applied to FPGA based spiking neural networks. The influence of the parallel processing on the benefits of approximate computing is also discussed in detail.

Keywords: energy efficient; parallel neuromorphic; energy; approximate arithmetic; efficient parallel; neuromorphic architectures

Journal Title: Neurocomputing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.