Abstract In this paper, we address the problem of human interaction recognition. We propose a novel compositional interaction descriptor to represent complex human interactions containing high intra and inter-class variations.… Click to show full abstract
Abstract In this paper, we address the problem of human interaction recognition. We propose a novel compositional interaction descriptor to represent complex human interactions containing high intra and inter-class variations. The compositional interaction descriptor represents motion relationships on individual, local, and global levels to build a highly discriminative description. We evaluate the proposed method using UT-Interaction and BIT-Interaction public benchmark datasets. Experimental results demonstrate that the performance of the proposed approach is on a par with previous methods.
               
Click one of the above tabs to view related content.