LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient traffic congestion estimation using multiple spatio-temporal properties

Photo from wikipedia

Traffic estimation is an important issue to analyze the traffic congestion in large-scale urban traffic situations. Recently, many researchers have used GPS data to estimate traffic congestion. However, how to… Click to show full abstract

Traffic estimation is an important issue to analyze the traffic congestion in large-scale urban traffic situations. Recently, many researchers have used GPS data to estimate traffic congestion. However, how to fuse the multiple data reasonably and guarantee the accuracy and efficiency of these methods are still challenging problems. In this paper, we propose a novel method Multiple Data Estimation (MDE) to estimate the congestion status in urban environment with GPS trajectory data efficiently, where we estimate the congestion status of the area through utilizing multiple properties, including density, velocity, inflow and previous status. Among them, traffic inflow and previous status (combination of time and space factors) are not both used in other existing methods. In order to ensure the accuracy and efficiency, we apply dynamic weights of data and parameters in MDE method. To evaluate our methods, we apply it on large-scale taxi GPS data of Beijing and Shanghai. Extensive experiments on these two real-world datasets demonstrate the significant improvements of our method over several state-of-the-art methods.

Keywords: status; traffic; efficient traffic; estimation; traffic congestion; congestion

Journal Title: Neurocomputing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.