LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive evolutionary neural control of perturbed nonlinear serial PAM robot

Photo by charlesdeluvio from unsplash

Abstract This paper proposes a novel adaptive joint position control system for a highly nonlinear SCARA serial robot using the pneumatic artificial muscle (PAM) actuator. First the new inverse and… Click to show full abstract

Abstract This paper proposes a novel adaptive joint position control system for a highly nonlinear SCARA serial robot using the pneumatic artificial muscle (PAM) actuator. First the new inverse and forward neural NARX (IFNN) models are proposed as to dynamically identify all nonlinear and hysteresis features of the SCARA serial PAM-based robot. Parameters of the new IFNN model are optimized by the modified differential evolution (MDE) algorithm. Secondly, the new IFNN model is applied in the novel proposed adaptive evolutionary neural IFNN-IMC controller that is applied to improve the precision and to reject the steady-state error in the joint position SCARA serial robot control. Finally, the novel adaptive back-propagation (ABP) algorithm based on fuzzy reasoning is applied for online updating the weight values of the IFNN model which helps the novel proposed adaptive evolutionary neural IFNN-IMC controller adapt well to external disturbances and dynamic variations in its operation. Experimental tests confirmed the performance and advantages of the proposed control scheme in comparison with other nonlinear control methods.

Keywords: serial pam; adaptive evolutionary; control; robot; evolutionary neural

Journal Title: Neurocomputing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.