LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-modal self-paced learning for image classification

Photo from wikipedia

Abstract Self-paced learning (SPL) is a powerful framework, where samples from easy ones to more complex ones are gradually involved in the learning process. Its superiority is significant when dealing… Click to show full abstract

Abstract Self-paced learning (SPL) is a powerful framework, where samples from easy ones to more complex ones are gradually involved in the learning process. Its superiority is significant when dealing with challenging vision tasks, like natural image classification. However, SPL based image classification can not deal with information from multiple modalities. As images are usually characterized by visual feature descriptors from multiple modalities, only exploiting one of them may lose some complementary information from other modalities. To overcome the above problem, we propose a multi-modal self-paced learning (MSPL) framework for image classification which jointly trains SPL and multi-modal learning into one framework. Specifically, the multi-modal learning process with curriculum information and the curriculum learning process with multi-modal information are iteratively performed until the final mature multi-modal curriculum is learned. As this multi-modal curriculum can grasp the easy to hard knowledge from both the sample level and the modality level, a better model can be learned. Experimental results on four real-world datasets demonstrate the effectiveness of the proposed approach.

Keywords: image classification; multi modal; self paced; paced learning

Journal Title: Neurocomputing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.