LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-convex weighted ℓp nuclear norm based ADMM framework for image restoration

Photo from wikipedia

Abstract Inspired by the fact that the matrix formed by nonlocal similar patches in a natural image is of low rank, the nuclear norm minimization (NNM) has been widely used… Click to show full abstract

Abstract Inspired by the fact that the matrix formed by nonlocal similar patches in a natural image is of low rank, the nuclear norm minimization (NNM) has been widely used in various image processing studies. Nonetheless, nuclear norm based convex surrogate of the rank function usually over-shrinks the rank components since it treats different components equally, and thus may produce a result far from the optimum. To alleviate the aforementioned limitations of the nuclear norm, in this paper we propose a new method for image restoration via the non-convex weighted lp nuclear norm minimization (NCW-NNM), which is able to accurately impose the image structural sparsity and self-similarity simultaneously. To make the proposed model tractable and robust, the alternating direction method of multiplier (ADMM) framework is adopted to solve the associated non-convex minimization problem. Experimental results on various image restoration problems, including image deblurring, image inpainting and image compressive sensing (CS) recovery, demonstrate that the proposed method outperforms many current state-of-the-art methods.

Keywords: image restoration; nuclear norm; image; non convex

Journal Title: Neurocomputing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.