LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Matrix completion with capped nuclear norm via majorized proximal minimization

Photo from wikipedia

Abstract We investigate the problem of matrix completion with capped nuclear norm regularization. Different from most existing regularizations that minimize all the singular values simultaneously, capped nuclear norm only penalties… Click to show full abstract

Abstract We investigate the problem of matrix completion with capped nuclear norm regularization. Different from most existing regularizations that minimize all the singular values simultaneously, capped nuclear norm only penalties the singular values smaller than certain threshold. Due to its non-smoothness and non-convexity, by formulating with Majorization Minimization (MM) approach, we develop a fast Majorized Proximal Minimization Impute (MPM-Impute) algorithm. At each iteration, the sub-problem is relaxed to a surrogate (upper bound) function and solved via proximal minimization with closed form solution. Though it requires singular value decompositions (SVD) at each iteration, by incorporating with the randomized algorithm, we propose the Randomized Truncated Singular Value Thresholding (RTSVT) operator to lower the computational cost. In addition, in contrast with most MM approaches, our algorithm is guaranteed to converge to the stationary points. Experimental results on synthetic data, image inpainting show that the completion results exceed or achieve comparable performance than state-of-the-art, yet several times faster.

Keywords: nuclear norm; proximal minimization; minimization; matrix completion; capped nuclear

Journal Title: Neurocomputing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.