LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Trace Ratio Criterion based Discriminative Feature Selection via l2, p-norm regularization for supervised learning

Photo from wikipedia

Abstract Dealing with high-dimensional dataset has always been an important problem and feature selection is one of useful tools. In this paper, we develop a new filter based supervised feature… Click to show full abstract

Abstract Dealing with high-dimensional dataset has always been an important problem and feature selection is one of useful tools. In this paper, we develop a new filter based supervised feature selection method by combining Trace Ratio Criterion of Linear Discriminant Analysis (TRC-LDA) and group sparsity regularization. The filter based supervised feature selection method is a classifier-independent method while the TRC-LDA criterion is a recently developed criterion for dimensionality reduction that can well preserve discriminative information of dataset. However, there are seldom methods by utilizing TRC-LDA criterion for feature selection. On the other hand, imposing the l2,0-norm to the projection matrix of TRC-LDA will force some rows in it to be zero while keep other rows nonzero making the index of nonzero rows to be the selected features, however, l2,0-nom minimizing problem is NP-hard and intractable. To solve the above problem, in this paper, we develop a new method, namely, Trace Ratio Criterion Discriminative Feature Selection (TRC-DFS), for feature selection. The proposed TRC-DFS has imposed l2,1-norm, i.e. an approximation of l2,0-norm, to the projection matrix W of TRC-LDA to achieve feature selection. As a result, the proposed TRC-DFS can both achieve feature selection as well as capture the discriminative structure of data. We also extend the proposed method with l2,p-norm (0

Keywords: criterion; feature; feature selection; trc; trace ratio

Journal Title: Neurocomputing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.