LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hyperspectral image denoising via minimizing the partial sum of singular values and superpixel segmentation

Photo from archive.org

Hyperspectral images (HSIs) are often corrupted by noise during the acquisition process, thus degrading the HSI's discriminative capability significantly. Therefore, HSI denoising becomes an essential preprocess step before application. This… Click to show full abstract

Hyperspectral images (HSIs) are often corrupted by noise during the acquisition process, thus degrading the HSI's discriminative capability significantly. Therefore, HSI denoising becomes an essential preprocess step before application. This paper proposes a new HSI denoising approach connecting Partial Sum of Singular Values (PSSV) and superpixels segmentation named as SS-PSSV, which can remove the noise effectively. Based on the fact that there is a high correlation between different bands of the same signal, it is easy to know the property of low rank between distinct bands. To this end, PSSV is utilized, and in order to better tap the low-rank attribute of pixels, we introduce the superpixels segmentation method, which allows pixels in HSI with high similarity to be grouped in the same sub-block as much as possible. Extensive experiments display that the proposed algorithm outperforms the state-of-the-art. © 2018 Elsevier B.V.

Keywords: partial sum; segmentation; hyperspectral image; singular values; sum singular

Journal Title: Neurocomputing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.