LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single infrared image enhancement using a deep convolutional neural network

Photo from wikipedia

Abstract In this paper, we propose a deep learning method for single infrared image enhancement. A fully convolutional neural network (CNN) is used to produce images with enhanced contrast and… Click to show full abstract

Abstract In this paper, we propose a deep learning method for single infrared image enhancement. A fully convolutional neural network (CNN) is used to produce images with enhanced contrast and details. The conditional generative adversarial networks are incorporated into the optimization framework to avoid the background noise being amplified and further enhance the contrast and details. The existing convolutional neural network architectures, such as residual architectures and encoder–decoder architectures, fail to achieve the best results both in terms of network performance and application scope for infrared image enhancement task. To address this problem, we specifically design a new refined convolutional neural architecture that produces visually very appealing results with higher contrast and sharper details compared to other network architectures. Visible images are used for training since there are fewer infrared images. Proper training samples are generated to ensure that the network trained on visible images can be well applied to infrared images. Experiments demonstrate that our approach outperforms existing image enhancement algorithms in terms of contrast and detail enhancement. Code is available at https://github.com/Kuangxd/IE-CGAN .

Keywords: image enhancement; network; infrared image; convolutional neural

Journal Title: Neurocomputing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.