LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep learning-based methods for person re-identification: A comprehensive review

Photo from wikipedia

Abstract In recent years, person re-identification (ReID) has received much attention since it is a fundamental task in intelligent surveillance systems and has widespread application prospects in numerous fields. Given… Click to show full abstract

Abstract In recent years, person re-identification (ReID) has received much attention since it is a fundamental task in intelligent surveillance systems and has widespread application prospects in numerous fields. Given an image of a pedestrian captured from one camera, the task is to identify this pedestrian from the gallery set captured by other multiple cameras. It is a challenging issue since the appearance of a pedestrian may suffer great changes across different cameras. The task has been greatly boosted by deep learning technology. There are mainly six types of deep learning-based methods designed for this issue, i.e. identification deep model, verification deep model, distance metric-based deep model, part-based deep model, video-based deep model and data augmentation-based deep model. In this paper, we first give a comprehensive review of current six types of deep learning methods. Second, we present the detailed descriptions of existing person ReID datasets. Then, some state-of-the-art performances of methods over recent years on several representative ReID datasets are summarized. Finally, we conclude this paper and discuss the future directions of the person ReID.

Keywords: person; deep model; identification; deep learning

Journal Title: Neurocomputing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.