LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A hybrid algorithm for low-rank approximation of nonnegative matrix factorization

Abstract Nonnegative matrix factorization (NMF) is a recently developed method for data analysis. So far, most of known algorithms for NMF are based on alternating nonnegative least squares (ANLS) minimization… Click to show full abstract

Abstract Nonnegative matrix factorization (NMF) is a recently developed method for data analysis. So far, most of known algorithms for NMF are based on alternating nonnegative least squares (ANLS) minimization of the squared Euclidean distance between the original data matrix and its low-rank approximation. In this paper, we first develop a new NMF algorithm, in which a Procrustes rotation and a nonnegative projection are alternately performed. The new algorithm converges very rapidly. Then, we propose a hybrid NMF (HNMF) algorithm that combines the new algorithm with the low-rank approximation based NMF (lraNMF) algorithm. Furthermore, we extend the HNMF algorithm to nonnegative Tucker decomposition (NTD), which leads to a hybrid NTD (HNTD) algorithm. The simulations verify that the HNMF algorithm performs well under various noise conditions, and HNTD has a comparable performance to the low-rank approximation based sequential NTD (lraSNTD) algorithm for sparse representation of tensor objects.

Keywords: low rank; rank approximation; algorithm; nonnegative matrix

Journal Title: Neurocomputing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.