LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An empirical assessment of deep learning approaches to task-oriented dialog management

Photo from wikipedia

Abstract Deep learning is providing very positive results in areas related to conversational interfaces, such as speech recognition, but its potential benefit for dialog management has still not been fully… Click to show full abstract

Abstract Deep learning is providing very positive results in areas related to conversational interfaces, such as speech recognition, but its potential benefit for dialog management has still not been fully studied. In this paper, we perform an assessment of different configurations for deep-learned dialog management with three dialog corpora from different application domains and varying in size, dimensionality and possible system responses. Our results have allowed us to identify several aspects that can have an impact on accuracy, including the approaches used for feature extraction, input representation, context consideration and the hyper-parameters of the deep neural networks employed.

Keywords: empirical assessment; management; deep learning; dialog management

Journal Title: Neurocomputing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.