LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Memorized Sparse Backpropagation

Photo from wikipedia

Abstract Neural network learning is usually time-consuming since backpropagation needs to compute full gradients and backpropagate them across multiple layers. Despite its success of existing works in accelerating propagation through… Click to show full abstract

Abstract Neural network learning is usually time-consuming since backpropagation needs to compute full gradients and backpropagate them across multiple layers. Despite its success of existing works in accelerating propagation through sparseness, the relevant theoretical characteristics remain under-researched and empirical studies found that they suffer from the loss of information contained in unpropagated gradients. To tackle these problems, this paper presents a unified sparse backpropagation framework and provides a detailed analysis of its theoretical characteristics. Analysis reveals that when applied to a multilayer perceptron, our framework essentially performs gradient descent using an estimated gradient similar enough to the true gradient, resulting in convergence in probability under certain conditions. Furthermore, a simple yet effective algorithm named memorized sparse backpropagation (MSBP) is proposed to remedy the problem of information loss by storing unpropagated gradients in memory for learning in the next steps. Experimental results demonstrate that the proposed MSBP is effective to alleviate the information loss in traditional sparse backpropagation while achieving comparable acceleration.

Keywords: sparse backpropagation; backpropagation; memorized sparse; loss; information

Journal Title: Neurocomputing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.