LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive prescribed performance neural network control for switched stochastic pure-feedback systems with unknown hysteresis

Photo from wikipedia

Abstract This paper investigates the problem of neural network (NN) prescribed performance tracking control for a class of switched stochastic nonlinear pure-feedback systems which contain unknown nonlinear functions, unmeasured state… Click to show full abstract

Abstract This paper investigates the problem of neural network (NN) prescribed performance tracking control for a class of switched stochastic nonlinear pure-feedback systems which contain unknown nonlinear functions, unmeasured state variables, and unknown hysteresis input. It provides an adaptive NN controller which is not restricted to a particular type of hysteresis input. A general mathematical model is introduced to describe two kinds of hysteresis nonlinearities and to utilize in the control design producer. Other focus of this paper is on the performance constraint problem to avoid performance degradation and system damage in practical control systems. Prescribed performance control (PPC) and backstepping technique are thus synthesized to develop an adaptive NN output feedback tracking control scheme under deterministic switching signal. Regarding this concern, to cope with the cause of non-differentiable difficulties and complex deductions in traditional PPC, a new asymmetry error transformation is employed. Moreover, radial basis function NNs (RBFNNs) are applied to approximate the unknown nonlinear functions and to construct a NN nonlinear observer to estimate the immeasurable state variables. Based on Lyapunov stability theory, it is demonstrated that the proposed controller can guarantee that all signals in the closed-loop system are semiglobally uniformly ultimately bounded in probability and the tracking error converges to a small neighborhood of the origin with the prescribed performance bounds. Finally, two simulation examples are provided to confirm the advantages of the presented control design approach.

Keywords: control; hysteresis; performance; neural network; switched stochastic; prescribed performance

Journal Title: Neurocomputing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.