LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AEGCN: An Autoencoder-Constrained Graph Convolutional Network

Photo from wikipedia

We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains. As suggested by its name, the core of this model… Click to show full abstract

We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains. As suggested by its name, the core of this model is a convolutional network operating directly on graphs, whose hidden layers are constrained by an autoencoder. Comparing with vanilla graph convolutional networks, the autoencoder step is added to reduce the information loss brought by Laplacian smoothing. We consider applying our model on both homogeneous graphs and heterogeneous graphs. For homogeneous graphs, the autoencoder approximates the adjacency matrix of the input graph by taking hidden layer representations as encoder and another one-layer graph convolutional network as decoder. For heterogeneous graphs, since there are multiple adjacency matrices corresponding to different types of edges, the autoencoder approximates the feature matrix of the input graph instead, and changes the encoder to a particularly designed multi-channel pre-processing network with two layers. In both cases, the error occurred in the autoencoder approximation goes to the penalty term in the loss function. In extensive experiments on citation networks and other heterogeneous graphs, we demonstrate that adding autoencoder constraints significantly improves the performance of graph convolutional networks. We also notice that such technique can be applied on graph attention network to improve the performance as well. This reveals the wide applicability of the proposed autoencoder technique.

Keywords: graph convolutional; convolutional network; autoencoder constrained; network

Journal Title: Neurocomputing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.