LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monocular 3D object detection using dual quadric for autonomous driving

Photo from archive.org

Abstract 3D object detection is an essential component of scene perception and motion prediction in autonomous driving. Previous methods represent objects as the truncated signed distance fields (3D bounding box),… Click to show full abstract

Abstract 3D object detection is an essential component of scene perception and motion prediction in autonomous driving. Previous methods represent objects as the truncated signed distance fields (3D bounding box), which can only provide the geometric constraints of point-to-line. In this work, we define the object as a more compact representation, quadric (ellipsoid) in a 3D scene and a conic (ellipse) in an image, which can provide stronger geometric constraints of surface-to-curve. Specifically, we estimate a ellipsoid from a conic fitted by a 2D bounding box to obtain 3D object localization and occupancy. We further to formulate this constraint relation as a nonlinear optimization problem in dual space, which enables us to easy recover stable and accurate 3D object parameters by adding only three additional direction-aware branches to the existing 2D detection networks. In addition, we decouple the dimensions of object and update the length and orientation of objects in our iterative algorithm when the estimations from the 2D detection networks have different deviations. The final detection results can be obtained after passing through our geometry-related refinement network. We evaluate our method on the KITTI object detection benchmark and achieve the best performance among published monocular competitors.

Keywords: object detection; using dual; detection; monocular object; detection using; autonomous driving

Journal Title: Neurocomputing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.