LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-paced Data Augmentation for Training Neural Networks

Photo from wikipedia

Data augmentation is widely used for machine learning; however, an effective method to apply data augmentation has not been established even though it includes several factors that should be tuned… Click to show full abstract

Data augmentation is widely used for machine learning; however, an effective method to apply data augmentation has not been established even though it includes several factors that should be tuned carefully. One such factor is sample suitability, which involves selecting samples that are suitable for data augmentation. A typical method that applies data augmentation to all training samples disregards sample suitability, which may reduce classifier performance. To address this problem, we propose the self-paced augmentation (SPA) to automatically and dynamically select suitable samples for data augmentation when training a neural network. The proposed method mitigates the deterioration of generalization performance caused by ineffective data augmentation. We discuss two reasons the proposed SPA works relative to curriculum learning and desirable changes to loss function instability. Experimental results demonstrate that the proposed SPA can improve the generalization performance, particularly when the number of training samples is small. In addition, the proposed SPA outperforms the state-of-the-art RandAugment method.

Keywords: augmentation training; self paced; augmentation; data augmentation; training neural

Journal Title: Neurocomputing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.