LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Progressive low-rank subspace alignment based on semi-supervised joint domain adaption for personalized emotion recognition

Photo from wikipedia

Abstract Recently, many scenarios, such as affective disorders treatment, have sparked rising needs for establishment of personalized emotion recognition (PER) models. Unfortunately, the data sparsity issue violates the basic i.i.d.… Click to show full abstract

Abstract Recently, many scenarios, such as affective disorders treatment, have sparked rising needs for establishment of personalized emotion recognition (PER) models. Unfortunately, the data sparsity issue violates the basic i.i.d. assumption of supervised learning (i.e., training data and test data are independently and identically distributed). In this paper, we present a semi-supervised joint domain adaption (SSJDA) solution, aiming to inject the hidden domain knowledge from ample labeled data of multiple source individuals into the target subject’s customized model. Specifically, we put forward a novel Progressive Low-Rank Subspace Alignment (PLRSA) approach, which unifies a semi-supervised instance-transfer paradigm and an unsupervised mapping-transfer learning paradigm in a single optimization framework. We leverage the boosting-based TrAdaBoost algorithm and the Transfer Component Analysis (TCA) algorithm for the implementation of instance reweighting and feature matching, respectively. Then we introduce the l 2 , 1 - norm to pass feedback and make the joint learning feasible. The central idea is to progressively minimize the cross-domain distribution discrepancies to finally construct the optimal domain-invariant features. We systematically compare the PLRSA method with five state-of-the-art techniques using two public EEG datasets (DEAP and SEED). Both many-to-one and one-to-one evaluations are performed. The experimental results have confirmed the efficacy of the proposed method.

Keywords: supervised joint; joint domain; semi supervised; domain; emotion recognition; personalized emotion

Journal Title: Neurocomputing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.