LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Utilizing graph neural networks to improving dialogue-based relation extraction

Photo by wocintechchat from unsplash

Abstract Relation extraction has been an active research interest in the field of Natural Language Processing (NLP). The past works primarily focused on a corpus of formal text which is… Click to show full abstract

Abstract Relation extraction has been an active research interest in the field of Natural Language Processing (NLP). The past works primarily focused on a corpus of formal text which is inherently non-dialogic. Recently, the dialogue-based relation extraction task, which detects relations among speaker-aware entities scattering in dialogues, has been gradually arousing people’s attention. Some sequence-based neural methods have been carried out to obtain the relevant information. However, identifying cross-sentence relations remains unsolved, especially in the context of a specific-domain dialogue system. In this paper, we propose a Relational Attention Enhanced Graph Convolutional Network (RAEGCN), which constructs the whole dialogue as a semantic interactive graph by emphasizing the speaker-related information and leveraging various inter-sentence dependencies. A dense connectivity mechanism is also introduced to empower the multi-hop relational reasoning across sentences, which can capture both local and non-local features simultaneously. Experiments show the significant superiority and robustness of our model on a real-world dataset DialogRE, as compared with previous approaches.

Keywords: dialogue based; relation extraction; based relation; relation

Journal Title: Neurocomputing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.