LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection

Photo from wikipedia

Abstract Label assignment has been widely studied in general object detection because of its great impact on detectors’ performance. In the field of dense pedestrian detection, human bodies are often… Click to show full abstract

Abstract Label assignment has been widely studied in general object detection because of its great impact on detectors’ performance. In the field of dense pedestrian detection, human bodies are often heavily entangled, making label assignment more important. However, none of the existing label assignment method focuses on crowd scenarios. Motivated by this, we propose Loss-aware Label Assignment (LLA) to boost the performance of pedestrian detectors in crowd scenarios. Concretely, LLA first calculates classification (cls) and regression (reg) losses between each anchor and ground-truth (GT) pair. A joint loss is then defined as the weighted summation of cls and reg losses as the assigning indicator. Finally, anchors with top K minimum joint losses for a certain GT box are assigned as its positive anchors. Anchors that are not assigned to any GT box are considered negative. LLA is simple but effective. Experiments on CrowdHuman and CityPersons show that such a simple label assigning strategy can boost MR by 9.53% and 5.47% on two famous one-stage detectors – RetinaNet and FCOS, becoming the first one-stage detector that surpasses Faster R-CNN in crowd scenarios.

Keywords: label assignment; loss; assignment; dense pedestrian; pedestrian detection

Journal Title: Neurocomputing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.