In mammals, the pannexin gene family consists of three members (Panx1, 2, 3), which represent a class of integral membrane channel proteins sharing some structural features with chordate gap junction… Click to show full abstract
In mammals, the pannexin gene family consists of three members (Panx1, 2, 3), which represent a class of integral membrane channel proteins sharing some structural features with chordate gap junction proteins, the connexins. Since their discovery in the early 21st century, pannexin expression has been detected throughout the vertebrate body including eye, ear, nose and tongue, making the investigation of the roles of this new class of channel protein in health and disease very appealing. The localization in sensory organs, coupled with unique channel properties and associations with major signaling pathways make Panx1, and its relative's, significant contributors for fundamental functions in sensory perception. Until recently, cell-based studies were at the forefront of pannexin research. Lately, the availability of mice with genetic ablation of pannexins opened new avenues for testing pannexin functions and behavioural phenotyping. Although we are only at the beginning of understanding the roles of pannexins in health and disease, this review summarizes recent advances in elucidating the various emerging roles pannexins play in sensory systems, with an emphasis on unresolved conflicts.
               
Click one of the above tabs to view related content.