LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neonatal inflammation induces reorganization in dendritic morphology of retinal ganglion cells but not their retinogeniculate projection in mice

Photo from wikipedia

Perinatal inflammatory insult in preterm babies is associated with vision impairment, but the underlying cellular mechanism is still unknown. In this study, we set out to explore whether systemic inflammatory… Click to show full abstract

Perinatal inflammatory insult in preterm babies is associated with vision impairment, but the underlying cellular mechanism is still unknown. In this study, we set out to explore whether systemic inflammatory stress affects the development of retinal ganglion cells (RGCs). Neonatal inflammation was induced by single and systemic injection of lipopolysaccharide (LPS, 1 mg/kg) at postnatal day 4 (P4). Morphological changes of RGCs were investigated by using 3D neuron reconstruction technique in Thy-1 YFPH transgenic mice at P21, of which a fraction of RGCs selectively expresses the yellow fluorescent protein (YFP). Three types (Type I, II, III) of RGCs were distinguished and classified according to the characteristic features in their dendritic field area and dendrite density. Neonatal exposure to LPS did not alter the composition of the three RGC types but induced a reorganization of dendritic architecture in the RGC Type I and II (but not Type III). The average diameter, surface area and volume of dendrites in both RGC Type I and II were increased after systemic inflammation compared with those in the control group. However, soma sizes of all three RGC types were not affected by neonatal inflammation. Meanwhile, using anterograde labeling of the retinal cells, we found that neonatal exposure to LPS also did not affect the pattern of RGC projections in the dorsal lateral geniculate nucleus of the thalamus (dLGN). These results indicate that RGC dendrite reorganization induced by neonatal inflammation may contribute to the retinal cell dysfunctions associated with systemic inflammation in premature babies.

Keywords: retinal ganglion; neonatal inflammation; inflammation; ganglion cells; reorganization dendritic

Journal Title: Neuroscience Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.