Drusen are focal deposits between the retinal pigment epithelium (RPE) and Bruch's membrane in the retina of patients with age-related macular degeneration. Amyloid-β is one of the important components of… Click to show full abstract
Drusen are focal deposits between the retinal pigment epithelium (RPE) and Bruch's membrane in the retina of patients with age-related macular degeneration. Amyloid-β is one of the important components of drusen, which leads to local inflammation. Furthermore, intracellular amyloid-β disrupts tight junctions of the RPE. However, the intracellular mechanisms linking intracellular amyloid-β and tight-junction disruption are not clear. In this study, intracellular amyloid-β oligomers activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, leading to the disorganization of tight junctions of the RPE in mice after subretinal injection of amyloid-β. Amyloid-β also triggered NF-κB activation in the RPE cells in confluent culture, which was inhibited by the suppression of the advanced glycosylation end product-specific receptor. NF-κB inhibition by an IκB kinase inhibitor prevented the suppression of expression of tight-junction proteins, zonula occuludens-1 and occludin in RPE cells. In addition, tight-junction complexes remained intact in the RPE of mice with NF-κB inhibition, although there were intracellular amyloid-β oligomers. These data suggested that NF-κB inhibition might be a therapeutic approach to prevent amyloid-β-mediated tight-junction disruption.
               
Click one of the above tabs to view related content.